
 Axe Parser 1.1.2

AXE PARSER
Created By

Kevin Horowitz

Version 1.1.2 Omega
February 2, 2012

Complete User's Guide

Page 1

 Axe Parser 1.1.2

 Table of Contents

1 Overview
1.1 Summary
1.2 Axe vs. Other Languages
1.3 Freedoms & Limits

2 Using Axe Parser
2.1 Writing & Editing Programs
2.2 Compiling Programs
2.3 Error Messages

3 Programming
3.1 Numbers & Basic Math
3.2 Pointers
3.3 Data & Arrays
3.4 Read & Write to External Variables
3.5 An Example Program
3.6 Optimization Tricks

4 Commands List
4.1 Under construction. See Commands.html instead.

5 Other Info & Resources
6 Credits

Page 2

 Axe Parser 1.1.2

Overview
Summary

So what exactly is Axe Parser? Axe is a revolutionary new programing language for the
TI-83/84 series calculators. It is designed with game creation in mind, but the
applications are limitless. It offers an alternative to the restrictions of BASIC but without
the complexity of pure Assembly. An Axe program can compile into a no-stub
executable or to your favorite shell and therefore does not require any external
application to run your program.

Axe vs. Other Languages
BASIC xLIB/Celtic BBC Basic Assembly Axe

Language
Difficulty Easy Easy Medium Hard Medium

Speed Slow Medium Fast Very Fast Very Fast
Editable
On-calc? Yes Yes Special Editor

Required Somewhat Yes

Execution Interpreted Interpreted Interpreted Compiled Compiled
Sprite
Support No Yes Yes Yes Yes

External
Variables
Required
To Run

Pictures, Vars,
Lists, Strings,
etc.

Same as
BASIC plus
16kb App

49kb App None None

Shell
Compatibility Yes Some No Yes Yes

Specialty Math Games Variety Everything Games
Source Code
Visible Always Always Always Optional Optional

There is no one programming language for everything, each has advantages and
disadvantages. It is up to you to decide what best fits your needs. If your top priorities
are speed, quick development, graphics, and calculator portability, then Axe Parser is
definitely the way to go.

Page 3

 Axe Parser 1.1.2

Freedoms & Limits
Axe Parser allows you to do what most calculator programming languages do not. You
are able to draw sprites, access external variables (like appvars), multiplayer linking,
grayscale support, interrupts, sound, multi-key press detection, contrast adjustment,
and much much more. All of this usually at the same speed as regular assembly. You
even have the option of inserting your own asm code directly into the program.

Unfortunately, with every new freedom, there is a price to pay. Like assembly, but unlike
the other languages, a bad crash in Axe will usually cause a RAM clear and you will
lose most of your data. If the crash is really really bad, its possible but unlikely, that the
archive could get corrupted as well. For this reason, it is recommended that you begin
programming on an emulator until you get used to the language enough to where you
don't make those kinds of mistakes. I recommend wabbitemu which can be
downloaded at revsoft.org. Another option is to remember to archive your source code
and backup all your programs before you start experimenting with Axe Parser.

Another thing to keep in mind is that the programs are not as optimized as pure
assembly. They will be on average one and a half to two times larger than if the
program were actually optimized by an experienced asm programmer. However, there
are many optimizations that can be done using Axe itself, and that will be discussed in a
later section.

Axe is the ultimate tool for a good execution (of programs)

Page 4

 Axe Parser 1.1.2

Using Axe Parser
Writing & Editing Programs

To start making your programs, you follow the exact same procedure as if you were
starting a BASIC program. You go to [PRGM], New, and then type in the name. This is
your source code so make sure you pick a name that's not the same as what you plan
to name your final program. For instance if you plan to make “MARIO” you might want
to name your source “MARIOSRC”.

The next thing you absolutely need is an Axe Header. You must start the first line with a
period, which is a comment in Axe, followed by the name you want for the compiled
program. If you want a program description, you can type a space and then the
description on that same line, but this is optional. In the above example your program
might look like this:

PROGRAM:MARIOSRC
:.MARIO A fun platformer
:

That's basically all you need to get started. This program should show up on the list of
programs in the Axe Compile menu. You can compile from both RAM and Flash.

There is also another kind of Axe header which starts with two periods instead of one.
These are library files that have the special property that they do not show up on the
compiling list so they cannot be compiled independently; only as part of another
program. However, you can still import regular Axe source code as a library.

Compiling Programs
To compile a program, go ahead and open up the Axe Application. In “Options” you can
select what type of shell you want to compile for. If you don't want a shell, you can run
your programs using the “asm(“ command in the catalog. There is also an option to
compile to applications. This uses very hackish code and may not work on all models of
calculator so be cautious when using this feature as this is the one that can cause
archive corruptions if the it fails to write the application correctly.

Next, select “Compile” to see a list of all Axe source code files on your calculator. You
can use the arrow keys or any letter key to select your program, and then press [Enter]
to compile. Compiling usually takes about one second for every 2000 bytes of source
on an 84+ so don't be surprised if its almost instant. If you get an error, check the error
codes section to diagnose the problem.

Page 5

 Axe Parser 1.1.2

You can also press [zoom] instead of [Enter] to compile quickly, but the executables will
be slightly larger and slightly slower. This feature is mainly to test changes in large
programs if you don't want to wait several extra seconds to see if the change worked.

After an error, Axe will scroll to the error just like in BASIC (unless you press [clear]) if
the source is unarchived and the error was a problem with the source code. Once
compiling is complete, you should see the executable in your programs list.

Since running untested programs can often be unsafe and lead to loss of source code
Axe provides a quick way to backup your source code. If you press [Alpha] in the
compile menu, a copy of the selected program is created in archive so that just in case
your source gets deleted or corrupted, you can recover it from the last backup. Once
backed up, you will see a copy of the program appear in the compile list but with a hash
next to it indicating that its a backup file. Selecting it will restore the backup and
pressing [Del] will delete the backup file.

You also have the option of making the backup process automatic. If you select “Auto
Backup” from the safety section of the options menu, then a new backup will be created
every time you compile the source.

Page 6

http://xkcd.com/303/

 Axe Parser 1.1.2

 Error Messages
BAD CONSTANT A non-constant was found where a constant was expected.
CANNOT USE HERE Valid syntax, but not useable in the current environment.
DECLARE FIRST Constants, unlike data, must be declared before they're used.
DUPLICATE SYMBOL The label or static pointer already exists.
ELSE ONLY FOR IF Else can only be used after an if or elseif statement.
INVALID AXIOM You are using a corrupted or missing Axiom.
INVALID HEX The hexadecimal number is invalid or the wrong size.
INVALID NUMBER The number is too large or small to fit in 2 bytes.
INVALID TOKEN The token used is unsupported here.
INVLAID FILE USE You have used a file type incorrectly.
LABEL MISSING You called a label or subroutine that does not exist.
LOW BATTERY You cannot write to archive if the battery is low.
MISSING AN END A loop or if statement was not closed by the end of the program.
MISSING PROGRAM The library program you tried to include is not an Axe file.
MUST END COMMENT A multi-line comment was not capped by the end of the source.
NAME LENGTH Name is too long for a label or static pointer
NO NESTED LIBS You cannot have nested library files at the moment.
OS VAR MISSING The object that is to be absorbed does not exist.
OUT OF MEMORY The ram is full and there is no more room to write the program.
PARENTHESIS An ending parenthesis is required for this command.
SAME OUTPUT NAME You named the output file the same as your source.
TOO MANY AXIOMS Only 5 Axioms are allowed total per program.
TOO MANY BLOCKS There are too many nested loops or if statements.
TOO MANY ENDS Found an “End” that doesn't end anything.
TOO MANY SYMBOLS There are too many static pointers or labels.
TOO MUCH NESTING There are too many parenthesis in a single expression.
UNDEFINED The static pointer you are using was not declared.
UNDOCUMENTED The Axiom used an undocumented instruction.
UNKNOWN ERROR Something is wrong with the parser. Report bug immediately!
WRONG # OF ARGS You have the wrong number of arguments.

Page 7

 Axe Parser 1.1.2

Programming
Numbers & Basic Math

Alright, now to the fun stuff! Okay, this is one of the most important differences between
Axe and BASIC. Numbers in Axe are all 16-bit integers meaning that there's no such
thing as fractions and decimals. What the 16-bit part of it means is that a number can
only hold a value between 0 and 65,535. This is called the unsigned number system
meaning that there is no sign: all the numbers are positive.

Now wait a minute you say, what if I want to use negative numbers? Well in that case,
you want to use signed representation. The way that works is that we cut our range in
half and say that all the numbers on one side are positive and numbers on the other
side are negative. So numbers from 0 to 32767 we still say are positive but now the
numbers from 32768 to 65535 we say are actually -32768 to -1. So our new range is
-32,768 to 32,767

Remember, both representations are really the exact same number. It's just a different
way of representing it. So -1 really is the same number as 65535. And I'm not just
making this up, the mathematics works this way. If you add 65535 to a number you get
exactly the same result as if you subtracted 1! How the heck does that happen? That
brings me to my next point which is modular arithmetic.

Remember, we can only hold values between 0 and 65535 right? Well what happens if
we keep adding and overflow the maximum value? Let's count by constantly adding 1:

0,1,2,3,...,65533,65534,65535,0,1,2,3...

Do you see what happened? Once you pass the maximum, you loop around back to 0
again. Signed representation does the same thing, best illustrated by this xkcd comic:

Page 8

http://xkcd.com/571/

 Axe Parser 1.1.2

Now lets get into some Axe code to apply our new-found knowledge. This will all
appear to be very similar to BASIC, but remember, the number system works in a
completely different way. Lets make a program that finds the sum of the first 100
numbers:

PROGRAM:A
:.SUM100
:0→S
:For(N,1,100)
:S+N→S
:End
:Disp S Dec▶

You have to add Dec to▶
display numbers because
there are multiple ways
to display data in Axe.
Numbers display using
unsigned representation.

Next up is multiplication and division. Multiplication is nice because mathematically, its
just repeated addition, so it works the same for signed and unsigned numbers. Division
on the other hand can give different results depending on if you want to do it signed or
unsigned. Signed division, or any signed math in general, you can perform by typing
the operation twice. For instance:

-10/5 = 13105
-10//5 = -2

Parser sees: 65526/5
Parser sees: -10/5

Although the math is basically what you would expect, what you might not expect is that
Axe always does the order of operations from left to right always. So watch carefully
how the parser will read this:

4-3*8+2/3
1*8+2/3
8+2/3
10/3
3

Subtraction first
Multiplication
Addition
Division
Always rounds down.

Of course, you can use parenthesis whenever you need them. The reason I don't
automatically add the parenthesis for you to do the usual order of operations is because
I want you to be aware of how many parenthesis you use. The less you need, the more
optimized the code is and the faster and smaller it will be. You'll see more about this in
the optimization section.

Another thing I should mention is that the caret key “^” no longer means “power”. It now
is the modulus operator. It means the remainder left over after a division. You can learn
more about this command and the other advanced math commands in the commands
list section.

Page 9

 Axe Parser 1.1.2

Pointers
You must understand pointers! If you've never used a programming language with
pointers before, pay VERY close attention. Pointers are such powerful and useful tools
that you'll be using them in virtually all of your programs. We'll start slow.

What is RAM? You probably know its just a bunch of memory, 65536 bytes of it to be
exact on the TI-83/84. But how do you access all of that RAM? How do you read and
write to it? We just follow the simplest procedure; give every byte in RAM its own
address. The 0th byte has the address 0, the 1st byte has the address 1, all the way up
to the last byte with the address 65535. Get used to starting your counts at zero by the
way.

So lets make some data. We'll start with the classic string:

PROGRAM:A
:.HELLO
:"Hello World"→Str1
:Disp Str1

Its just like BASIC right? Wrong! It just appears to behave like BASIC. Let's look at
what's actually going on. First of all, Str1 is a pointer which is a number, not an actual
string. The sentence “Hello World” gets stored at an address somewhere in the
executable and the pointer Str1 is just a number that tells us where that string is
located. So yes! Display really does just take a number as an argument! Then it takes
that pointer, finds the data it points to, and that's how it knows what string to display.

But since a pointer is just a number, we can do math with it! What do you think would
be the effect of doing this modification?

PROGRAM:A
:.HELLO
:"Hello World"→Str1
:Disp Str1+6

This just outputs “World”. That's because the string is stored in order in consecutive
addresses. Lets pretend the “H” was located at address 100. That means “e” is at 101,
the first “l” is at 102, etc. So by the time we get to the address 106, we're at “W”. That's
why the display routine skips the hello part.

Page 10

 Axe Parser 1.1.2

In Axe, Str1 and the other calculator variables are called static pointers. What that
means is once you declare them, their value cannot change for the rest of the program.
The allowed static pointer variables are Str, Pic, and GDB. You can use these for
whatever you want since they're all just numbers anyway, but its a naming convention to
use Str for strings, Pic for sprites, and GDB for data. None of these are the BASIC
variables by the way, they're entirely new variables that just share the same name for
convenience.

Another thing is that Axe allows you to name everything with up to 5 numbers/letters
instead of just a single number. The following are all unique and valid names:

Str1
Pic0
GDB4AXE

Str01
Pic9ZZZZ
GDB45

Str666
Pic8C
GDB3X

There are other ways to enter data, one of those is by using hexadecimal. You don't
really have to worry about how it works, but its just a more compact way to write a
number since there's 16 characters for each digit instead of 10. This is convenient for
sprites since you can use a tool to convert them; one is included in the package.

So now lets draw a happy face sprite.

PROGRAM:A
:.HAPPY
:[3C7EDBFFBDDB663C]→Pic1
:ClrDraw
:Pt-On(44,28,Pic1)
:DispGraph

Pt-On Draws sprites by
taking the position on the
screen and a pointer to
the sprite as arguments.
Then we have to update the
screen to see it.

Page 11

http://xkcd.com/138/

 Axe Parser 1.1.2

Data & Arrays
So how do we actually manipulate data? First, let's take care of reading. We have to
tell the calculator what byte to read, so we need to give it the address. Let's look at how
we can read a list of numbers:

PROGRAM:A
:.LISTREAD
:Data(5,2,6,11,4)→GDB1
:For(A,0,4)
:Disp {A+GDB1} Dec▶ ,i
:End

ΔList is data in the form
of a list of numbers.

The imaginary 'i' is a
newline character.

We use the curly brackets to indicate that we want the byte that's at the address of the
pointer, not the the value of the pointer itself. This is what the pointer is said to “point to”
in a process called referencing.

We can similarly store values into these addresses:

PROGRAM:A
:.LISTWRIT
:Data(0,0,0,0,0)→GDB1
:For(A,0,4)
:A*2→{A+GDB1}
:Disp {A+GDB1} Dec▶ ,i
:End

Remember, bytes stored in
memory can only hold
values between 0 and 255
unsigned or -128 to 127
signed. If you want to
have the full range, see
the {}r command.

Even though you wrote over data in the program, that data isn't going to be saved when
you exit. That's because when you run a program, it actually executes a copy of the
program and when its done executing there's no write-back meaning that the
temporary copy just disappears and doesn't replace the original.

Its really pointless to have to store this list, called an array in the program itself since its
data isn't actually used and it gets written over anyway. Instead, the calculator actually
has some special addresses called free ram that you're allowed to use for whatever you
want. The addresses to the largest of these locations are in the constants L1-L6. You'll
have to see the command list for more details about which ones are best to use. I'll use
L1 and L2 in my examples.

Lets say you need to control 20 sprites on the screen and each sprite needs an X and Y
coordinate that has to be stored and updated. Here is an example of what you can do:

Page 12

 Axe Parser 1.1.2

PROGRAM:A
:.DRAW20
:[3C7EDBFFBDDB663C]→Pic1
:
:.Initialize XY
:For(A,0,19)
:rand^88→{A+L1}
:rand^54→{A+L2}
:End
:
:.Display Spites
:For(A,0,19)
:Pt-On({A+L1},{A+L2},Pic1)
:End
:DispGraph

The easiest way to get
random numbers is to take
the modulus with X to get
a random number between 0
and X-1.

Also, when you're using
free ram, it DOES NOT use
any program ram like in
BASIC. A list or matrix
in free ram takes 0
memory whereas the same
data in BASIC can be
pretty huge.

Matrices, or more generally multidimensional arrays are a little trickier. Imagine a 2
dimensional array that we want to store in L1. We have to fit this into a one dimensional
array so the best way to do it is by combining it from left to right and top to bottom.

1 2 3
A B C
X Y Z
L O L

 If we know the row “R” and column “C” both starting at 0, we can find the data in that
position by using this simple math trick:

So in general, you can use this formula, which is already in order of operations:
<Row#>*<Total Columns> + <Column#> + <Start of Data>

Page 13

:{R*3+C+L1}

1 2 3 A B C X Y Z L O L

http://xkcd.com/163/

 Axe Parser 1.1.2

Read & Write to External Variables
There are times when you need to save information that will continue to be there even
after you quit the program like high scores for instance. You may also want to read off
or write to external data from the calculator such as pictures or strings. There are
currently 2 methods for accomplishing these tasks. You can either read and write data
from RAM or you can read data directly from Archive.

 Reading Variables From RAM

Since RAM is random access memory, you can read, write, and modify variables freely.
The main restriction with RAM however, is that it's relatively small, gets erased during
ram clears, and can easily be corrupted by bad coding. However, once a variable is
generated in RAM, you always have the option of archiving and unarchived it from your
program.

In order to do anything with variable manipulation, you need to know the name of the
variable you intend to use. Since names can be long, the entire name cannot fit into a
single variable, so instead, routines involving external variables will take pointers to
Name Strings. The following chart lists some examples of name strings:

"prgmABC"
"appvABC"
"grpABC"
"LABC"
"L1"
"varA"
"Str1"
"GDB1"
"Y1"
"[A]"
"Ans"

The Program ABC
The Appvar ABC
The Group ABC (Archive Only)
The List ABC
The List L1
The Real number A
The String Str1
The Graph database GDB1
The Equation Y1
The Matrix [A]
The Ans variable

Some types of name strings need prefixes and those are underlined in the chart above.
They are NOT the lowercase letters, they are specific tokens, most of which can be
found using [2nd] and then [7], [8], or [9] which are the u, v, and w recursive tokens
respectively.

Unfortunately, unlike free ram, external variables are not in the same location every time
you run the program and thus can not just be located with a static pointer. Instead, you
have to use the Axe command GetCalc to retrieve a pointer to the variable. Once you
have that pointer, you can store it to a variable and use it for the rest of the program.

Page 14

 Axe Parser 1.1.2

For example, lets say we wanted to Retrieve the appvar “MyScore” from ram to see if
our score S has beat the high score or not.

PROGRAM:A
:.HISCORE
:"appvMyScore"→Str1
:GetCalc(Str1)→P
:If P
: If S>{P}r

: S→{P}r

: End
:End

If statements don't need
the “Then” anymore.

We use the r modifier to
store the full 16-bit
number instead of just
the first 8-bits.

Notice we also have to make sure the appvar exists before we can use it. That's what
the “If P” is for. It just makes sure P is non-zero. If it were zero, it means that either the
appvar is not in ram or it doesn't exist. Speaking of existence, how do we create the
appvar in the first place? Let's modify the example to create the appvar if it doesn't
exist and set the initial high score to zero in that case.

PROGRAM:A
:.HISCORE
:"appvMyScore"→Str1
:!If GetCalc(Str1)→P
: GetCalc(Str1,2)→P
: Return!If P
: 0→{P}r

:End
:If S>{P}r

: S→{P}r

:End

The second argument is the
size. Its only 2 in the
example because we only
have a single 2 byte number
to store in the appvar.

If the pointer is still
zero after trying to create
it, there is not enough RAM
left on the calculator. So
it will just quit.

The size argument here makes sense because appvars can be different sizes. But
what about things like real numbers? Even though they have a fixed size, you still need
to specify the correct size because the program will use that number to determine if
there is enough RAM to create the variable.

 Reading Variables From Archive

Reading from Archive is slightly different than reading from RAM. The main difference
is that instead of using pointers, you use Files. You can have up to 10 files
simultaneously opened at once. Each file is represented by one of the “Y-vars”: Y 0 – Y9

Luckily, even though files are completely different than pointers due to technical
reasons, the Axe syntax allows you to use them as if they were regular pointers in two
of the most important commands: the curly brackets and the copy command.

Page 15

 Axe Parser 1.1.2

Here is the same high score example as before, but this time, the score will be read
from archive and then displayed:

PROGRAM:A
:.HISCORE
:"appvMyScore"→Str1
:GetCalc(Str1,Y1)→A
:Return!If A
:Disp {Y1}r

GetCalc does NOT return a
pointer when opening a file.
Its simply non-zero if it
exists in archive and 0
otherwise.

The Maximum size file you can read from is 48kb but I don't think any variable gets that
big anyway except for groups maybe. Each type of external variable has its own
structure. Sometimes its simple like appvars, programs, strings, and pictures, where its
nothing but pure data. Sometimes the formatting is weird like for real numbers, lists and
matrices. I don't even know how groups are formatted to be honest, you may want to
check out the TI-Developer's Guide for more information on variable formatting.

Another thing I should mention is that when reading files from either RAM or Archive,
the size of the variable you are opening can be found 2 addresses before the start of
the data. For instance, if you were unsure about the size of the appvar in the above
example, you can get the size with the following code:

:{Y1-2}r→S Saves size of the Y1 file to S

Page 16

 Axe Parser 1.1.2

An Example Program
Let's make one of the first video games ever created: Pong! Fist our simple header:

PROGRAM:PONGSRC
:.PONG MY FIRST AXE GAME

Simple Description

Next step is to define all our data. There will be 2 strings and 2 sprites:

:"PONG"→Str1
:"SCORE:"→Str2
:[000000000000FFFF]→Pic1
:[0000182C3C180000]→Pic2

Our Title
For the score
The paddle
The ball

Now a very primitive title screen. It will just say “PONG” and pause for a second.

:DiagnosticOff
:ClrHome
:Output(6,3,Str1)
:Pause 1000

You should almost always
include the DiagnosticOff
command in start of your
programs because it makes
them much cleaner.

Now to initialize our variables. The ball's X position will be inflated for more precision.

:0→S-1→D
:44→Z*256→X
:10→Y
:sub(HT)

S=Score, D=YSpeed
Z=Paddle_X, X=Ball_X*256
Y=Ball_Y, V=XSpeed
HT will be a subroutine
that is called when the
ball hits the paddle and
it sets the new speed.

Setup the main loop of the program. Also take care of all key presses.

:Repeat getKey(15)
:If getKey(2) and (Z≠0)
:Z-2→Z
:End
:If getKey(3) and (Z≠88)
:Z+2→Z
:End

By testing individual
keys rather than all of
them at once, it makes
the program a lot faster
and more flexible.

Page 17

 Axe Parser 1.1.2

Now, we update the new position of the ball.

:X+V→X
:Y+D→Y

Position plus speed
equals new position

Here is the collision detection. Bounce if you hit a wall or the paddle and change the
speed. Quit if the ball goes off of the screen.

:If Y>70
:Goto D
:End
:If Y=0
:sub(HT)
:End
:If Y=54 and
 (abs(X/256-Z)<8)
:sub(HT)
:S+1→S
:End
:If X/256=0 or (X/256=88)
:-V→V+X→X
:End

Quit when reaching edge.
D is the ending label.

Bounce off the roof and
change direction.

If the paddle and ball
are close enough, bounce
and increase the score.

Bounce off of a wall and
update the position
again.

Time to draw the sprites and update the screen:

:ClrDraw
:Pt-On(Z,54,Pic1)
:Pt-On(X/256,Y,Pic2)
:DispGraph

The buffer only updates
to the screen when you
call DispGraph

We're done with our loop, so lets add the quit code:

:End
:Lbl D
:ClrHome
:Disp Str2,S Dec,▶ i
:Return

End the loop.

What used to be “Stop” in
BASIC is now “Return”

Finally, we'll add our “Hit” subroutine to bounce the ball:

:Lbl HT
:rand^512-256→V
:-D→D

Subroutines should end
with “Return” but the end
of the code automatically
returns anyway, so no
reason to add it twice.

Page 18

 Axe Parser 1.1.2

That's it! So just run it through the parser and you should see a new “PONG” program
show up on your program list. If you didn't use a shell, you can run it by using the
command asm(). The result is a fun little game that should keep you occupied for many
years to come! (Hopefully this estimate is an exaggeration)

Anyway, the outline here for program flow is a pretty standard practice for game
programming. You have in order: the Header, data declarations, title screen, variable
setting, the main loop, quitting code, and then all your subroutines. There are a lot
more example programs included with the parser, you can check out their source for a
better look at exactly how its done.

Good luck with your projects and happy programming!

Page 19

http://xkcd.com/117/

 Axe Parser 1.1.2

Optimization Tricks
THE FIRST LAW OF OPTIMIZATION: 99% OF THE TIME, IF THE COMPILED CODE
IS SMALLER, ITS ALSO FASTER. Basically, you'll have to play around with different
commands. Start a new program and type out the command you are trying to optimize
and compile it. Check the size of the compiled program and then try another way of
doing it until you find the smallest size.

If you're not going to use a subroutine more than once, just put it inline. Even if it might
make the program more organized, it is adding at least 4 bytes to the file size.

Conversely, when you do find yourself repeating the same actions twice or more, its
probably best to put it in a subroutine. You can always test the program both ways and
see if it makes it any smaller.

If you have constants in your expression, try putting them at the end if at all possible.

Unoptimized
:2*A
:1+A

Optimized
:A*2
:A+1

Try to make expressions use the least amount of parenthesis as possible. Use left to
right order of operations to your advantage.

Unoptimized
:A*(B+(C*D))

Optimized
:C*D+B*A

When initializing variables, initialize variables with the same value together. Also, if the
variables are at most 2 apart, then is also yields an optimization to do this.

Unoptimized
:0→A:0→B:0→C
:10→A:11→B:13→C

Optimized
:0→A→B→C
:10→A+1→B+2→C

If the last line of your entire code is a return, you can remove it. Axe automatically adds
the return for you so there is no reason to have 2 returns in a row. Saves 1 byte.

Page 20

 Axe Parser 1.1.2

Never make an if or while statement end with "not equal to zero". Instead, you can omit
that part since not being zero is implied. Likewise, don't end an if, repeat, or while
statement with "equals zero".

Unoptimized
:If A≠0
:If A=0
:While A=0

Optimized
:If A
:!If A
:Repeat A

If speed is super super important, you can chain divisions by 2 to quickly divide by
higher powers of two. It could increase the file size, but it will definitely be much faster.
For instance, a faster way to do: A/8 is: A/2/2/2.

Animated sprites should be done with pointers. Don't use a huge lists of if-then
statements to decide which sprite to display. Just define all the sprites in order one after
another and reference them by offset from the first sprite.

Unoptimized
:If A=0:Pt-On(X,Y,Pic0):End
:If A=1:Pt-On(X,Y,Pic1):End
:If A=2:Pt-On(X,Y,Pic2):End

Optimized
:Pt-On(X,Y,A*8+Pic0)

There is a procedure called “Tail Call Optimization” which can save bytes and speed
when you have a subroutine call another subroutine right before it returns. Instead, you
can just goto to that subroutine and steal its “Return” instead of coming back and using
the original one.

Unoptimized
:sub(A)
:Return

Optimized
:Goto A

Page 21

 Axe Parser 1.1.2

Other Info & Resources
The best way I think to learn more about the commands at the moment is to look
through the commands list file and play around with modifying the example programs.
Just experiment with different things.

For specific help about specific questions, please I would prefer if you did not email me,
instead I have a forum dedicated to the parser at Omnimaga.org. The Axe Parser
Forum is currently located at http://axe.omnimaga.org. Its also a great resource to look
through the topics there because you might find some very useful information that I
probably forgot about or skipped in this tutorial. I usually have a new update there on a
weekly basis.

If you want to contact me through email for some other reason, my email is:
compfreakkev@yahoo.com

I'm especially interested in bugs if you find any. Although, you can also report that on
the Axe Forums. Make sure you have the latest version of Axe Parser before reporting.

Page 22

http://axe.omnimaga.org/
mailto:compfreakkev@yahoo.com

 Axe Parser 1.1.2

Credits
First off, thanks to the Omnimaga community for their extraordinary help with alpha
testing, giving me very helpful suggestions and feedback, and keeping me motivated to
work on this project. I couldn't have do it without you guys.

Special Thanks:

Brendan Fletcher (calc84maniac) For his super savvy assembly knowledge and help
with creating efficient routines for the parser.

Alex Marcolina (BuilderBoy) For the logo graphics and really showing Axe's full potential
with awesome programs and screen shots.

Drew DeVault (SirCmpwn) For helping others with detailed tutorials online.

Brandon Wilson (BrandonW) Helped hugely with many of the awesome features that I
would never be able to do without his l33t hacking skills.

Christopher Mitchell (Kerm Martian) Thanks for the help with the error scrolling!

Zachary Wassall (Runer112) Helped tremendously with finding new optimizations to
help reduce the size of generated programs.

Etienne Gauvin Redesigned the entire HTML layout for the commands list to make it
more aesthetically pleasing and printer friendly.

And of course giving credits to xkcd for the comics used in this tutorial. Its my favorite
web comic. You'll probably like it too if you're nerdy (which clearly you are if you're
reading a tutorial about how to program on a calculator).

Page 23

http://xkcd.com/

